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Motivation

Self-driving datasets

Kitti 80 meters

Image sources: velodyne lidar

Waymo 80 meters
Question: can we achieve dense depth

sensing beyond LiDAR range with low-cost
cameras? (e.g., >300 meters)
60 mph =96 km/h =27 m/s
80 meters roughly means 3

seconds Example application:

Autonomous trucks driving on highway
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Long-range depth sensing is hard

Ultrasonic Short-range LIiDAR Long-range LIDAR
10m 80m 300m
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Long-range LiDAR: sparse and expensive
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Long-range depth sensing is hard

Basic idea: use two cameras with telephoto lens to capture a
stereo pair, then reconstruct a dense depth map.

Nikon P1000 Canon SX70 Industrial cameras!'®

[1] Industrial cameras are usually much cheaper than consumer ones. 15



Long-range depth sensing is hard
Important camera setup constraint:
Baseline is restricted to ~2 meters because of typical vehicle size.
What does this mean?
Depth estimation is very sensitive to pose error, especially rotation error.

It’s difficult for hardwares to achieve and maintain this precision.

. . b 2m
Triangulation angle: ~ -~ — =~ (.382°
z  300m
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Estimated depth: 2z ~ z - (1 — —) - Relative errorin
A estimated depth

A¢ : rotation error
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Tentative solution - SfM
Bas-relief ambiguity in SfM[!
Big focal length — Near-orthographic camera (Weak perspectivity)
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Figure 2: Ground-truth (blue) and the reconstructed (red) scene points. ~ Figure 3: Top-down view of ground-truth relative pose (solid) and
The unit for z, y, z axes is meter. the recovered one (dashed). 6 is exaggerated for illustration.

[1] Richard Szeliski and Sing Bing Kang. Shape Ambiguities in Structure From Motion. In Proc. European Conf. on Computer Vision (ECCV), pages

709-721. Springer, 1996. 17
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Our approach: a new three-camera vision system

left camera

back camera
right camera

;<

FOV=~6 degrees
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Our approach: novel depth estimation pipeline

Raw left view Raw right view Pseudo-rectified left view Pseudo-rectified right view

Pseudo-
Rectification

Disparity
Estimation
<

Proposition 1. When a small-FOV camera is rotated by a
small amount, the homography warping the original image
to the rotated view is approximately an affine transformation.

e,

L eeee—
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Estimated uncalibrated disparity



Our approach: novel depth estimation pipeline

Proposition 2. For two pixels in the left image with the same
depth, if they are m; pixels apart, while their corresponding
pixels in the back image are my, pixels apart, then the depth

of these two pixels in the left camera’s coordinate frame is Intuition: to estimate this

unknown offset, one essentially

MCZ_” (8) needs to know the metric depth of
o at least one 3D point.
Pseudo-rectified left view Raw back view
———
—> | Offset :

|
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Our approach: novel depth estimation pipeline

Raw left view Raw right view Pseudo-rectified left view Pseudo-rectified right view

Pseudo-
Rectification

Disparity
——— = > .
| Offset | Estimation
L — — — L84
e Ambiguity
Removal
60~65 70 75 80 85 Eva— 70” - 1i0 . 5

Estimated depth Estimated uncalibrated disparity



Results on synthetic datalll

Failure <1% <2% <3%
Ours 0 453% 80.1% 96.9%
Loop and Zhang [ | ©] 0 1.14% 2.73% 5.99%
StIM+MVS [19, 20] 15 6.71% 12.7% 19.1%

Table 1: Quantitative results on 40 synthetic scenes for methods in
Fig. 7. “Failure” means the number of scenes for which a method
fails to output a depth map. The metric is the portion of pixels
with relative depth error below certain threshold, i.e., 1%, 2%, 3%,
averaged over the successful scenes.

[1] Synthetic scenes might not be in their real-world scale. In experiments, we
fix the baseline/depth ratio to be ~1/150.

Relative error(%)

Ground-truth depth ~ Estimated depth

- Bt W
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Our method

Al el
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Replacing our pseudo-rectification with Loop et al’s

35 40 45 50 55 60
Multi-view SfM and MVS
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Figure 7: Comparison among different algorithms. For
rectification-based methods, the ground-truth depth map has been
warped to align with the rectified view. For SfM, we have used the
full ground-truth intrinsic matrix.

22



Results on real-world data

600 7
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300/
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Pseudo-rectified left view Estimated uncalibrated disparity Estimated unknown offset Estimated final depth

e Ground-truth depth is acquired by the laser
rangefinder: only pointwise measurement.
e Ground-truth: 302m Estimated: 300.8m
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Advantages

e Low-cost camera-based solution;
e Notrequire full pre-calibration of camera intrinsics and extrinsics;

e Robust to small camera vibrations: important when mounted on moving
vehicles.

Limitations

e Duetolack of equipment and facilities, the system has not been built and tested
on the road with real-autonomous cars.

e Our method relies on stereo matching as backbone, thus suffering from
common issues as stereo matching, e.g., textureless areas.
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Thank you!

More technical details can be found in our paper:
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